首页> 外文OA文献 >A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm-neural network approach
【2h】

A novel iron loss reduction technique for distribution transformers based on a combined genetic algorithm-neural network approach

机译:基于组合遗传算法 - 神经网络方法的配电变压器铁损降低技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents an effective method to reduce the iron losses of wound core distribution transformers based on a combined neural network- genetic algorithm approach. The originality of the work presented in this paper is that it tackles the iron loss reduction problem during the transformer production phase, while previous works were concentrated on the design phase. More specifically, neural networks effectively use measurements taken at the first stages of core construction in order to predict the iron losses of the assembled transformers, while genetic algorithms are used to improve the grouping process of the individual cores by reducing iron losses of assembled transformers. The proposed method has been tested on a transformer manufacturing industry. The results demonstrate the feasibility and practicality of this approach. Significant reduction of transformer iron losses is observed in comparison to the current practice leading to important economic savings for the transformer manufacturer.
机译:本文提出了一种基于神经网络-遗传算法相结合的降低绕线铁芯配电变压器铁损的有效方法。本文提出的工作的独创性是它解决了变压器生产阶段的铁损减少问题,而先前的工作则集中在设计阶段。更具体地,神经网络有效地使用在铁心构造的第一阶段进行的测量以预测组装好的变压器的铁损,而遗传算法则通过减少组装的变压器的铁损来改善单个铁心的分组过程。所提出的方法已经在变压器制造行业进行了测试。结果证明了该方法的可行性和实用性。与目前的做法相比,可以观察到变压器铁损的显着减少,从而为变压器制造商节省了大量的经济费用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号